蓝牙耳机就是将蓝牙技术应用在免持耳机上,让使用者可以免除恼人电线的牵绊,自在地以各种方式轻松通话。自从蓝牙耳机问世以来,一直是行动商务族提升效率的好工具。蓝牙笔记本电脑,就是具有蓝牙无线通信功能的笔记本电脑。
公元10世纪,北欧诸侯争霸,丹麦国王挺身而出,在他的不懈努力下,血腥的战争被制止了,各方都坐到了谈判桌前。通过沟通,诸侯们冰释前嫌,成为朋友。由 于丹麦国王酷爱吃蓝莓,以至于牙齿都被染成了蓝色,人称蓝牙国王,所以,蓝牙也就成了沟通的代名词。
一千年后的今天,当新的无线通信规范出台时,人们又用蓝牙来为它命名。1995年,爱立信公司最先提出蓝牙概念。蓝牙规范采用微波频段工作,传输速率每秒1M字节,最大传输距离10米,通过增加发射功率可达到100米。蓝牙技术是全球开放的,在全球范围内具有很好的兼容性,全世界可以通过低成本的无形蓝牙网连成一体。
▲本段摘自:科普中国
自1999年第一个蓝牙版本诞生,蓝牙技术已经发展了20余年!
蓝牙1.0
蓝牙1.0
传输速率748~810kpbs,单工传输,通信易受干扰,难以区分主副设备。
蓝牙1.1
传输速率在748~810kpbs,只能以单工的传输方式进行工作,容易受到同频率产品的通信干扰,已可进行主副设备区分。该版本支持Stereo音效的传输要求,但是频宽、频率、响应时间等参数指标达不到要求,也不算是一个应用在Stereo传输上最好的协议。
蓝牙1.2
传输速率未变,在蓝牙1.1版本的基础上 ,增加了抗干扰跳频功能,支持单通道播放,但是性能还是不理想。
蓝牙2.0
蓝牙2.0是1.2的优化提升版本,传输速率能达到2Mpbs左右。该版本蓝牙模块可以实现全双工的工作方式,可以在传输文件的同时传输语音信息,进行实时双向通信。功耗相对降低,开始支持立体声。
蓝牙2.1
该版本蓝牙模块具备了手机间的配对和近场通讯NFC(Near Field CoMMunication)机制;
Sniff Subrating功能:可以实现设定两个设备间的确认数据发送间隔,当我们延长这个时间间隔就可以让蓝牙芯片的功耗降低。
该版本的蓝牙协议支持全双工通信模式,数据可实现实时双向交互。蓝牙3.0
使用全新的协议,传输速率能够达到24Mbps,传输速率在蓝牙2.0的基础上大大提升,支持视频传输。
蓝牙4.0
实现极致的低功耗;低成本、低时延,可实现3ms的低延迟,还有AES-128加密,在保证性能的前提下实现较高的安全性。设备可多连,理论上能够实现100米的距离传输。
4.0以后的蓝牙版本属于低功耗蓝牙。
蓝牙4.1
实现通过IPV6协议连接到网络,提升用户入网便捷性和使用体验;
AES加密技术:通过硬件加密技术让我们获得更加安全的连接。
蓝牙4.2
通过6LoWPAN接入互联网,提升数据传输速率;传输速率提升,安全性加强。
蓝牙5.0
更先进的蓝牙芯片,支持左右声道独立接收音频,数据处理能力更强、延迟更低。
提升传输距离:可以达到300米
Beacon:提供广播服务
无损传输:支持24bit/192KHz的无损音源传输
蓝牙5.1
AOA功能:可以实现室内定位误差1m内,室内定位更加精准。蓝牙5.2
传输速率42Mbps,理论传输距离300米。增加了增强型ATT协议,LE功耗控制和LE同步信道等功能。
多主多从:主从一体角色下可同时连接7个从设备,并且可以作为从角色被另一个主角色设备连接。
Long Range模式:有效提高传输距离,增加通信范围。
支持大广播包:有效提升传输速率。
扩展广播包复用信道:复用37个信道传输,抗干扰能级强,传输快。
LE功率控制功能:根据信号强度变化来动态优化连接设备之间的传输功率,同时保证信号质量与减少功率浪费。
蓝牙5.3
传输速率与蓝牙5.2相同,延迟更低、续航更长、抗干扰能力更强。
支持包含广播数据信息(ADI)的周期性广播,有效提高通信效率;
ADI包括广播数据ID(DID)及广播组ID(SID),广播数据ID主要用于区分不同的广播数据内容,广播组ID用于区分不同的广播组。
新增LE增强版连接更新功能,轻松实现低功耗;
新增LE频道分级功能,可减小设备间的相互干扰;
新增Host设定Controller密钥长度的功能,安全性提高;
彻底删除高速配置(HS)及相关技术规范。
综上,蓝牙版本越高,功能越强大。蓝牙版本向下兼容。
▲本段摘自:亿佰特物联网应用
2021年12月,达姆施塔特大学、布雷西亚、CNIT 和安全移动网络实验室的研究人员发表了一篇论文,揭示了攻击者可以通过针对具有多种无线技术的移动设备的蓝牙组件来提取密码并操纵 Wi-Fi 芯片上的网络流量。智能手机、平板电脑和其他现代移动设备的芯片系统(SoC)包含独立的蓝牙、Wi-Fi 和 LTE 组件,每个组件都有自己专门的安全措施。然而,这些组件往往共享许多相同的资源,如设备的天线或无线频谱。根据上述论文,攻击者有可能利用这些共享资源作为桥梁,跨越无线芯片边界发起横向权限升级攻击。
如果攻击者能够利用这些漏洞,他们可以实现代码执行、内存读出和拒绝服务。
▲本段摘自:科普中国